| 1 | Overview, scale of quantum mechanics, boundary between classical and quantum phenomena | FT, sections 1.1-1.6. | 
| 2 | Planck's constant, interference, Fermat's principle of least time, deBroglie wavelength | G, section 1.1. FT, sections 2.1-2.3.  | 
| 3 | Double slit experiment with electrons and photons, wave particle duality, Heisenberg uncertainty | G, section 1.4. FT 2.10-2.11.   Feynman, Richard P., Robert B. Leighton, and Matthew L. Sands. The Feynman Lectures on Physics: Commemorative Issue. Vol. 3. Redwood City, CA: Addison-Wesley, 1989, chapter 1. ISBN: 9780201510058.
  | 
| 4 | Wavefunctions and wavepackets, probability and probability amplitude, probability density | G, sections 2.1-2.4. FT, sections 2.1-2.2 and 2.7-2.11.  | 
| 5 | Thomson atom, Rutherford scattering | FT, sections 1.1-1.12. | 
| 6 | Photoelectric effect, X-rays, Compton scattering, Franck hertz experiment | FT, sections 1.1-1.12. G, sections 1.2-1.3.  | 
| 7 | Bohr model, hydrogen spectral lines | G, section 1.5. FT, sections 1.7-1.12.  | 
| 8 | Bohr correspondence principle, shortcomings of Bohr model, Wilson-Sommerfeld quantization rules | G, section 1.5. FT, sections 1.7-1.12.  | 
| 9 | Schrödinger equation in one dimension, infinite 1D well | G, sections 3.1-3.3. FT, sections 3.3-3.10.  | 
 | In-class exam 1 |  | 
| 10 | Eigenfunctions as basis, interpretation of expansion coefficients, measurement | G, sections 3.4 and 5.1-5.2. FT, sections 3.4-3.7. Feynman, Richard P., Robert B. Leighton, and Matthew L. Sands. The Feynman Lectures on Physics: Commemorative Issue. Vol. 3. Redwood City, CA: Addison-Wesley, 1989, chapter 20. ISBN: 9780201510058.  | 
| 11 | Operators and expectation values, time evolution of eigenstates, classical limit, Ehrenfest's theorem | G, sections 5.3-5.5. FT, sections 8.1-8.4.  | 
| 12 | Eigenfunctions of p and x, Dirac delta function, Fourier transform | G, section 3.5. FT, sections 6.1-6.9.  | 
| 13 | Wavefunctions and operators in position and momentum space, commutators and uncertainty | FT, sections 4.1-4.2 and 8.1-8.10. | 
| 14 | Motion of wavepackets, group velocity and stationary phase, 1D scattering off potential step | G, sections 2.2 and 4.1. FT, sections 8.7-8.10 and 9.1-9.3.  | 
| 15 | Boundary conditions, 1D problems: Finite square well, delta function potential | G, sections 4.1-4.3. FT, sections 9.1-9.7.  | 
| 16 | More 1D problems, tunneling | G, sections 4.1-4.5. FT, sections 9.1-9.5.  | 
| 17 | Harmonic oscillator: Series method | G, section 4.7. FT, section 4.3.  | 
 | In-class exam 2 |  | 
| 18 | Harmonic oscillator: Operator method, Dirac notation | G, section 6.2. | 
| 19 | Schrödinger equation in 3D: Cartesian, spherical coordinates | G, section 8.1. FT, sections 5.1-5.7.  | 
| 20 | Angular momentum, simultaneous eigenfunctions | G, sections 7.1-7.2. FT, sections 11.1-11.2.  | 
| 21 | Spherical harmonics | G, section 7.3. FT, sections 10.1-10.7.  | 
| 22 | Hydrogen atom: Radial equation | G, section 8.2. FT, sections 12.1-12.6.  | 
| 23 | Hydrogen atom: 3D eigenfunctions and spectrum | G, section 8.3. FT, sections 12.1-12.6.  | 
| 24 | Entanglement, Einstein-Podolsky Rosen paradox | G, sections 20.1-20.3. | 
 | Final exam |  |