| LEC # | TOPICS | LECTURE NOTES | 
|---|---|---|
| 1 | Course Overview Single Particle Dynamics: Linear and Angular Momentum Principles, Work-energy Principle  | (PDF) | 
| 2 | Examples of Single Particle Dynamics | (PDF) | 
| 3 | Examples of Single Particle Dynamics (cont.) | (PDF) | 
| 4 | Dynamics of Systems of Particles: Linear and Angular Momentum Principles, Work-energy Principle | (PDF) | 
| 5 | Dynamics of Systems of Particles (cont.): Examples Rigid Bodies: Degrees of Freedom  | (PDF) | 
| 6 | Translation and Rotation of Rigid Bodies Existence of Angular Velocity Vector  | (PDF) | 
| 7 | Linear Superposition of Angular Velocities Angular Velocity in 2D Differentiation in Rotating Frames  | (PDF) | 
| 8 | Linear and Angular Momentum Principle for Rigid Bodies | (PDF) | 
| 9 | Work-energy Principle for Rigid Bodies | (PDF) | 
| 10 | Examples for Lecture 8 Topics | (PDF) | 
| 11 | Examples for Lecture 9 Topics | (PDF) | 
| 12 | Gyroscopes: Euler Angles, Spinning Top, Poinsot Plane, Energy Ellipsoid Linear Stability of Stationary Gyroscope Motion  | (PDF) | 
| 13 | Generalized Coordinates, Constraints, Virtual Displacements | (PDF) | 
| 14 | Exam 1 | |
| 15 | Generalized Coordinates, Constraints, Virtual Displacements (cont.) | (PDF) | 
| 16 | Virtual Work, Generalized Force, Conservative Forces Examples  | (PDF) | 
| 17 | D'Alembert's Principle Extended Hamilton's Principle Principle of Least Action  | (PDF) | 
| 18 | Examples for Session 16 Topics Lagrange's Equation of Motion  | (PDF) | 
| 19 | Examples for Session 17 Topics | (PDF) | 
| 20 | Lagrange Multipliers, Determining Holonomic Constraint Forces, Lagrange's Equation for Nonholonomic Systems, Examples | (PDF) | 
| 21 | Stability of Conservative Systems Dirichlet's Theorem Example  | (PDF) | 
| 22 | Linearized Equations of Motion Near Equilibria of Holonomic Systems | (PDF) | 
| 23 | Linearized Equations of Motion for Conservative Systems Stability Normal Modes Mode Shapes Natural Frequencies  | (PDF) | 
| 24 | Example for Session 23 Topics Orthogonality of Modes Shapes Principal Coordinates  | (PDF) | 
| 25 | Damped and Forced Vibrations Near Equilibria | (PDF) | 
| 26 | Exam 2 |